w.e.f Academic Year 2012-13

'G' Scheme

	MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION, MUMBAI															
	TEACHING	G AND EX	KAMINAT	ΓΙΟΝ	SCH	EME	FOR PO	ST S.S	5.C. D	IPLOM	IA CO	URSES				
COI	URSE NAME : DIPLOMA IN CH	EMICAL	ENGINE	ERIN	G						-					
COI	URSE CODE : CH									A						
DUI	RATION OF COURSE : 6 SEMES	STERS								WIT	'H EFF	ECT F	ROM	2012-1	13	
SEN	IESTER : SIXTH									DUF	RATIO	N : 16 \	WEEF	KS		
PAT	TERN : FULL TIME - SEMESTI	ER								SCE	IEME	: G				
				ТЕ	ACHI	NG			EX	AMINA	TION S	СНЕМЕ	C			
SR.	SUBJECT TITLE	Abbrevi	SUB	S	CHEM	E	PAPER	TH	(1)	PR	(4)	OR	(8)	TW	(9)	SW (17600)
NU		ation	CODE	ТН	TU	PR	HRS.	Max	Min	Max	Min	Max	Min	Max	Min	(17000)
1	Management \$	MAN	17601	03			03	100	40	/						
2	Environmental Technology	ETE	17646	03		02	03	100	40	25@	10					
3	Chemical Engineering Drawing	CED	17647	02		04	04	100	40			25#	10	25@	10	
4	Mass Transfer Operation	MTO	17648	03		04	03	100	40	50#	20			25@	10	
5	ELECTIVE (Any One)			•	•					•			•		•	50
	Alcohol Technology	ATE	17649	03	<u> </u>	02	03	100	40					25@	10	
	Petro Chemical Technology	PCT	17651	03		02	03	100	40					25@	10	
6	Process Simulation	PSI	17802	<u></u>		02								25@	10	
7	Project & Seminar	PAS	17803			04						50#	20	50@	20	
			TOTAL	14		18		500		75		75		150		50
Stud	ent Contact Hours Per Week: 32 Hr	S. DC OD (A			CIT											
	THEORY AND PRACTICAL PERIODS OF 60 MINUTES EACH.															
10tal Marks : 550																
w -	w - Internal Assessment, # - External Assessment, No Theory Examination, \$ - Common to all branches, #* - Online Theory Examination.															
Abbi	 reviations: TH-Theory, TU- Tutorial, PF Conduct two class tests each of 2 sessional work (SW). 	R-Practical, 5 marks fo	OR-Oral, T r each theo	'W- Te ory sul	erm Wo bject.	ork, SV Sum o	W- Sessior of the tota	nal Wor al test m	k narks o	of all su	bjects i	s to be o	conver	ted out	of 50	marks as

Progressive evaluation is to be done by subject teacher as per the prevailing curriculum implementation and assessment norms.
 Code number for TH, PR, OR, TW are to be given as suffix 1, 4, 8, 9 respectively to the subject code.

Course Name : All Branches of Diploma in Engineering / Technology Course Code : EJ/EN/ET/EX/EV/IC/IE/IS/MU/DE/ME/PG/PT/AE/CE/CS/CR/CO/CM/IF/ CW/EE/EP/EU/CH/CT/PS/CD/ED/EI/CV/FE/IU/MH/MI/TX/TC/FG Semester : Sixth for EJ/EN/ET/EX/EV/IC/IE/IS/MU/DE/ME/PG/PT/AE/CE/CS/CR/ CO/CM/IF/CW/EE/EP/EU/CH/CT/PS/TX/TC/FG and Seventh for MH/MI/CD/ED/EI/ CV/FE/IU Subject Title : Management

Subject Code : 17601

Teaching and Examination Scheme:

Tea	ching Scl	heme			Examinat	ion Scheme		
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
03			03	100			7	100

NOTE:

- > Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.
- > Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

Management concepts are universal and it is a multidisciplinary subject. They are equally applicable to different types industries like Manufacturing, Service and Trade as well as different kind of business activities like industry, army, school, hospital, retail shops etc. Also, at the end of diploma course polytechnic students are expected to enter in to the Industrial Environment. This environment is altogether different and new to the students. A proper introduction and understanding of management fundamentals is therefore essential for all these students.

Contents of the this subject will enable the students to address various issues related to human resource, finance, materials, legislations etc. by use of basic principles of management. This will ensure that students will play their role effectively to enhance the quality of business output in total.

Objective:

The students will able to:

- 1. Get familiarized with environment related to business processes.
- 2. Know the management aspects of the organisations.
- 3. Understand Role & Responsibilities of a Diploma engineer.
- 4. Understand importance of quality improvement techniques.
- 5. Appreciate need and importance of safety in industries.
- 6. Understand process of Industrial finance and its management.
- 7. Know the latest trends in industrial management.

Contents: Theory

Topic and contents	Hours	Marks
Topic 1: Overview of Business		
Specific Objectives		
State various business types and sectors		
Describe importance of globalisation 1.1 Types of Pusiness		
1.1. Types of Business		
Service Manufacturing		
• Manufacturing		
• Irade 1.2 Industrial sectors Introduction to		
Engineering industry	02	06
Engineering industry Process industry		
Totess industry Textile industry		
Chemical industry		
• Agro industry		
IT industry		
Banking Insurance Retail Hospitality Health Care		
1 3 Globalization		
• Introduction		
 Advantages & disadvantages with respect to India 		
Tonic 2: Management Process		
Topic 2. Munugement Trocess		
Specific Objectives		
State various management principles		
 Describe different management functions 		
2.1 What is Management?		
Evolution		
 Various definitions of management 		
Concept of management		
Levels of management	08	16
Administration & management		
• Scientific management by F.W.Taylor		
2.2 Principles of Management (14 principles of Henry Fayol)		
2.3 Functions of Management		
• Planning		
• Organizing		
• Directing		
• Controlling		
Decision Making		
Topic 3: Organisational Management		
Specific Objectives		
> Compare different forms of organisation ownership for a specific		
business	08	16
 Describe types of departmentation 		
3.1 Organization :		
Definition		

	1	· · · · · · · · · · · · · · · · · · ·
• Steps in organization		
3.2 Types of organization		
• Line		
• Line & staff		
• Functional		
• Project		
3.3 Departmentation		
• By product		
• By process		
• By function		
3.4 Principles of Organisation		
Authority & Responsibility		
Span of Control		
Effective Delegation		
Balance .stability and flexibility		
Communication		
3.5 Forms of ownership		
• Proprietorship		
Partnership		
Ioint stock		
Co-operative Society		
Govt Sector		
Tonic 4: Industrial Safety and Legislative Acts		
Topic 4. Industrial Safety and Degislative Acts		
Specific Objectives		
Describe types of accidents & safety measures		
 State provisions of industrial acts. 		
4.1 Safety Management		
Causes of accidents		
Types of Industrial Accidents	08	14
Preventive measures	08	14
Safety procedures		
4.2 Industrial Legislation - Necessity of Acts		
Important Definitions & Main Provisions of following acts:		
Indian Factory Act		
Modernan Companyation Act		
Workman Compensation Act Minimum Worker Act		
Millimulii Wages Act Tania 5: Financial Management (Na Numerical)		
Topic 5: Financial Management (No Numerical)		
Specific Objectives		
Explain functions of financial management		
 State the sources of finance & types of budgets 		
 Describe concepts of direct & indirect taxes 		
5 1 Financial Management- Objectives & Functions	08	16
5.2 Capital Generation & Management	08	10
Types of Capitals - Fixed & Working		
 Sources of raising Canital - Features of Short tarm Madium Tarm & 		
- Sources of faising Capital - Features of Short term, Medium Fermi &		
5 3 Budgets and accounts		
Types of Budgets		
	1	1

Total	48	100
7.4 ISO 900172000 - Benefits, Main clauses.		
Sigma		
1.3 Modern Technique & Systems of Quality Management like Kaizen, 5'S', 6		
Components of IQM – Concept, Elements of IQM, Benefits		
1.2 Meaning of Total Quality and TQM		
Quality Assurance – Concept, Quality Assurance System		
Quality Circle - Concept, Characteristics & Objectives		
Quality Control - Objectives, Functions, Advantages	06	16
Quality Management System – Activities, Benefits		
7.1 Meaning of Quality		
Describe Modern Technique & Systems of Quality Management		
State Principles of Quality Management		
Specific Objectives		
Topic 7: Quality Management	+	
• Enterprise Resource Flaining (ERF) - Concept, list of modules, advantages & disadvantages of FRP		
Entermise Descurse Dianning (EDD) Concert list of modules		
• Material Resource Planning (MRP) - Functions of MRP, Input to MRP,		
6.5 Modern Techniques of Material Management		
6.4 Standard steps in Purchasing		
of EOQ	<i>r</i>	
6.3 Economic Order Quantity Concept, graphical representation, determination	08	10
6.2 ABC Analysis - Necessity & Steps	08	16
6.1. Inventory Concept, its classification, functions of inventory		
State features of ERP & MRP		
 Describe purchase functions & procedures 		
 Describe concept of inventory. ABC analysis & EOO. 		
Specific Objectives		
Topic 6: Materials Management (140 Numerical)		
Custom Duty Tonia & Matariala Management (Na Numerical)		
• Value Added Tax		
• Income Tax		
• Service Tax		
• Excise Tax		
5.4 Meaning & Examples of -		
meaning of different terms involved.		
• Profit & Loss Account & Balance Sheet - Meaning, sample format,		
Labour Budget - Sample format		
Production Budget - Sample format		
Fixed & Variable Budget - Concept		

Learning Resources: Books:

Sr. No	Author	Name of Book	Publisher
01	Dr. O.P. Khanna	Industrial Engineering & Management	Dhanpat Rai & Sons New Delhi
02	Banga & Sharma	Industrial Engineering & Management	Khanna Publication
03	Dr. S.C. Saksena	Business Administration & Management	Sahitya Bhavan Agra
04	W.H. Newman E. Kirby Warren Andrew R. McGill	The process of Management	Prentice- Hall

E Source:

nptel.iitm.ac.in http://iete-elan.ac.in/subjects/amIndustrialMgmt.htm Course Name : Diploma in Chemical Engineering Course Code : CH Semester : Sixth Subject Title : Environmental Technology Subject Code : 17646

Teaching and Examination Scheme:

Teaching Scheme					Examinati	on Scheme		(
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
03		02	03	100	25@			125

NOTE:

- > Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.
- > Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

Environmental Technology is the application of environmental science, environmental monitoring and electronic devices used for monitoring and analysis of environmental pollutants. Environmental technology is used to control air pollution, water pollution. Content of this subject include working of different equipments for controlling air pollution, waste water treatment methods, solid waste management. Subject also covers industry specific waste treatment and environmental audit with ISO 14000.

Objectives:

The students will be able to

- 1. Understand the types of pollution and pollutants
- 2. Know working of different equipment used to control the air and water pollution.
- 3. Understand disposal methods of solid waste management.
- 4. Know waste treatment methods for specific industries.
- 5. Understand the procedure for environmental audit and norms of ISO 14000.

Content: Theory

Topic No.	Торіс	Hours	Marks
	Air Pollution		
	Specific Objectives:		
	To describe sources & effects of air pollutants		
	To draw & explain different equipment's for gaseous and		
	particulate air pollutants control		
	Content:		
	1.1 Cause and methods of sampling 14		
	• Air pollution : definition and classification of air pollutants		
	 Natural and Manmade sources of pollution (CO, CO₂, SOx, NOx. Particulates, Hydrocarbons, O₃) 		
	• Effect of air pollution on health, animals, material and		
	vegetation		
	Air Quality monitoring:		
	- CPCB Air quality standards (SOx, NOx, SPM,CO)		
	- Necessity of air sampling and Basic consideration during		
	sampling		
	- Sampling methods for gaseous and particulate type pollutants:		
1	• Gaseous pollutants: Grab sampling, Absorption, Adsorption,	12	30
	Freeze out sampling		
	• Particulate pollutants: dust fall jar, high volume sampler,		
	electrostatic precipitation.		
	1.2 Methods of controlling air pollution 16		
	• Air pollution controlling methods		
	• Principle, construction, working and application of Equipment		
	for gaseous pollutants control:		
	- Gas absorption equipment: Packed column, Plate column		
	- Fixed bed adsorber		
	- Thermal and catalytic incinerator		
	• Principle construction working and application of Equipment		
	for particulate types of pollutants control:		
	- Gravity settling chamber		
	- Cyclone separator		
	- Fabric filter		
	- Wet Scrubber		
	- Electrostatic precipitator		
	Water Pollution and Waste Water Treatment		
	Specific Objectives:		
	ro describe preniminary, primary and secondary treatment		
	To describe sludge treatment methods		
2	Content:	18	34
	2.1 Waste water characteristics 14		
	• Types of water pollutants and their sources& effects		
	• Physical, chemical & biological characteristics of		

	Wastewater		
	• Water sampling methods: Grab sampling and		
	composite sampling		
	• Concepts & significance:		
	DO, TSS, TDS, pH, BOD, COD etc.		
	• Drinking water quality standard (MPCB/WHO)		
	Role of pollution control board		
	2.2 Effluent treatment methods 12		
	• Preliminary Treatment.		
	Primary Treatment		
	• Secondary (Biological) Treatment: Principle, construction &		
	working of;		
	- Trickling Filters.		
	- Activated Sludge Treatment plant		
	2.3 Sludge treatment 08		
	Sludge Thickening		
	Sludge Digestion		
	Sludge Dewatering		
	Sludge Disposal		
	Industry Specific Waste Treatment		
	Specific Objectives:		
	To describe waste treatment in fertilizer industry.		
	> To describe waste treatment in petrochemical industry		
	Content:		
3	Names of pollutents produced from upon plant and their effects	04	10
	 Names of pollutants produced from the plant and their effects Treatment, of collid liquid spaceus offluent meduced in treat 		
	• Treatment of solid, inquid, gaseous efficient produced in urea		
	2.2 Pulp & Paper (Kraft) Industry		
	Problems of black liquor		
	Recovery of chemicals from black liquor		
	Solid Waste Management		
	Specific Objectives:		
	To test solid waste collection methods		
	> To describe precautions to be taken while disposal of		
	biomedical waste.		
	Content:	00	14
4	4.1 Solid waste :	08	14
	• Definition, classification, characteristics and origin.		
	• Solid waste collection methods.		
	• Solid waste processing.		
	• Reuse, recycle and recovery.		
	4.2 Disposal of Biomedical waste.		
	Environmental Audit & ISO 14000		
	Specific Objectives:		
5	To describe environmental audit procedure.		
	To state business benefits of ISO 14000	06	12
-	Content:		
	5.1Environmental management:		
	• Principle, objective and components of Environment		
	management	1	

5.2 Environment Audit :principle, Procedure and benefits5.3 ISO 14001:		
• Need for ISO 14001		
 Business Benefits of ISO 14000 		
Tota	48	100

Practicals:

Skills to be developed:

Intellectual Skills:

- 1. To develop logical thinking ability for carrying out titrations
- 2. To interpret test results on the basis of standard limits for each parameter
- 3. To develop reasoning ability for the parameters that exceeds standard limit

Motor Skill:

- 1. To handle the glassware
- 2. To operate instruments
- 3. To observe the phenomenon of chemical reactions
- 4. To measure required quantities accurately

List of Practicals:

Note: Practicals can be conducted in group of 4 students.

- 1) To estimate the concentration of flue gas/air pollutants by Orsat Apparatus/Gas analyzer.
- 2) To estimate suspended particulate matter in air by High Volume Sampler.
- 3) To determine total suspended solids and total dissolved solids in given Effluent sample.
- 4) To determine Acidity and Alkalinity of given Effluent sample.
- 5) To measure the turbidity of given waste water sample.
- 6) To estimate chloride content of the given water sample,
- 7) To determine the hardness of the given effluent sample.
- 8) To determine BOD of the given effluent sample.
- 9) To determine COD of the given effluent sample.
- 10) To prepare a report on pollution control/Effluent treatment plant of any industry visited.

Learning Resources:

Books:

Sr. No.	Name of Book	Name of Author	Name of Publisher
1	Text Book of Environmental Pollution and Control	Dr. H. S. Bhatia	New Delhi Galgotia Publication.
2	A Text Book of Environmental Chemistry and Pollution	Mr. S. S. Dara	S. Chand & Company Ltd.

	Control		New Delhi.
3	Environmental Pollution Control Engineering	C. S. Rao	New Age International(P) Limited, Publishers
4	Pollution Control in Process Industries	Mr. S. P. Mahajan.	Tata McGrawHill, New Delhi.
5	Wastewater Engineering: Treatment, Disposal & Reuse	Metcalf & Eddy	Tata McGraw Hill, New Delhi.

Website:

- 1. www.mpcb.gov.in
- 2. www.cpcb.nic.in
- 3. http://edugreen.teri.res.in
- 4. www.unep.org
- 5. www.ceeindia.org
- 6. www.iso.org

Course Name : Diploma in Chemical Engineering Course Code : CH Semester : Sixth Subject Title : Chemical Engineering Drawing Subject Code : 17647

Teaching and Examination Scheme:

Tea	ching Sch	ieme			Examinati	on Scheme		(
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
02		04	04	100		25#	25@	150

NOTE:

- > Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.
- > Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

There are different types of Chemical Process Industries. These industries require different unit processes, unit operations depending upon their product. While working in Chemical Plants Diploma Engineer is expected to locate the faults in various equipments.

Similarly he is required to interpret the process flow sheet and operate & control the process.

Contents of this subject provide him the opportunity to draw various equipment and flow processes. The practice of drawing will help the students to interpret the process diagram.

General Objectives:

The students will be able to

- 1. Know various equipments for unit operations in chemical process industries.
- 2. Understand the working of various processes.
- 3. Know different symbols used in chemical processes industries.
- 4. Understand the sequence of equipments from Input to Output.

Theory:

Topic No	Topics and Contents	Hours	Marks
110.	Process Instrumentation Symbols:		
	Snecific Objective		
	Draw the symbols for equipments valves instrumentation		
1	pumps	03	04
	Contents:		-
	Symbols for Unit Operation equipments, Instrumentation, Valves as		
	per IS 3232		
	Valves		
	Specific Objectives		
	Use working mechanism of different valves to identify the		
	faults		
2	Select pipe joint for specific application	05	12
2	Contents:		
	Explain working and specific applications of Gate Valve, Globe		
	valve, Ball Valve, Swing Check & Lift Check valves, Diaphragm		
	Valve, Safety Valve (Spring loaded, Rams Bottom)		
	Pipe Joints		
	Specific Objectives		
	• Select proper pipe joint for specific application		
	Contents:		
2	• Joints used for smaller pipes- Bend, Elbow. Nipple, Socket,	02	12
5	• Elanged Joints, CI Wolded near, Jub type, wolded flange	05	12
	• Flanged Johns- C1, welded neck, Hub type, welded flange		
	• Other Leints: Seelect & Spicet Leint, Hydrophie Leint		
	• Other Johns. Socket & Spigor John, Hydraulic John, Expansion Joints		
	(Corrugated joint Loop)		
	Support		
	Specific Objectives		
	Select proper support for vertical, horizontal, tall process		
	vessel		
4	Contents:	02	08
	• Hanger, roller support for steam pipes		
	• Leg, bracket and skirt support		
	Saddle support		
	Fabrication Drawing		
	Specific Objectives		
	Draw assembly of equipments.		
	Contents:		
5	Shell & Tube Heat Exchanger	05	16
5	Batch Reactor	05	10
	Distillation Column		
	• Types of heads, jackets, coils		
	• Types of packings		
	• Types of trays- sieve plate, bubble cap, valve tray		
6	Specification Sheet	04	08
0	Specific Objectives	04	00

	Select suitable MOC for specific application	
	Contents:	
	Specification Sheet for Batch Reactor, Shell & Tube Heat	
	Exchanger	
	Process Flow Diagrams	
	Specific Objectives	
	Develop skill of drying process flow diagram from process	
	description	
	Contents:	
	For any given chemical process, develop -	
7	Process Flow Diagram, Process Instrumentation Diagram 10 40	
	(16 Marks)	
	Utility Line Diagram (08 Marks)	
	Equipment Layout (08 Marks)	
	Tank Farm (08 Marks)	
	NOTE: Question on this topic is to be set by giving a process	
	description and related questions of each subpart without any option	
	Total 32 100	

Practicals:

Intellectual Skills:

- 1. Develop the ability of following the sequence of Unit Operations & Unit Processes.
- 2. Locate the fault in Unit Operation Equipments.

Motor Skills:

- 1. Draw proportionate drawings of equipments & processes
- 2. Develop the line work in preparing the drawing

NOTE: All drawing sheets must be drawn using drafter.

Draw following sheets

- 1. Symbols (IS-3232)
- 2. Systematic sectional views of gate , globe, ball and needle valve
- 3. Systematic sectional views of safety, check, foot valve.
- 4. Pipe joints Bend, Elbow. Nipple, Socket, Reducer, Expander, Union Joint, Tee, Cross, Plug, Blind, Flanged Joints- CI, Welded neck, Hub type, welded flange type, Screwed flange
- 5. Pipe joints Socket & Spigot Joint, Hydraulic Joint, Expansion Joints
- 6. Supports Hanger, roller support for steam pipes. Leg, bracket and skirt supports, Saddle support.
- 7. Shell & Tube Heat Exchanger
- 8. Batch Reactor (Types of heads, jackets, coils)
- 9. Distillation Column (Types of packings ,Types of trays- sieve plate, bubble cap, valve tray

- 10. Process flow diagram
- 11. Process Instrumentation diagram
- 12. Utility line diagram
- 13. Equipment layout and tank farm
- 14. Specification sheet for Batch reactor/Heat exchanger.

Learning Resources: Books:

Sr. No.	Author	Title	Publisher
1	BIS	IS-3232	BIS Publication
2	M.V.Joshi	Process Equipment & Design	Mc Millan
3	S.D.Dawande	Process Equipment & Design	Central Techno Publishers

Course Name : Diploma in Chemical Engineering Course code : CH Semester : Sixth Subject Title : Mass Transfer Operation Subject Code : 17648

Teaching and Examination Scheme:

Teac	ching Scł	neme			Examinati	on Scheme		(
TH	TU	PR	PAPER HRS.	TH	PR	OR	TW	TOTAL
03		04	03	100	50#		25@	175

NOTE:

- > Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.
- Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

Mass transfer operation is a core subject of chemical engineering.

After studying this subject the student would be able to design, operate and control various parameters related to mass transfer equipment.

General Objectives:

This subject will enable students to

- 1. Understand working & construction of mass transfer equipments
- 2. Select proper mass transfer operation.
- 3. Separation techniques studied in this subject are applicable in all chemical industries.

Theory:

Topic 1: Diffusion. Specific Objectives: > Calculate the rate of diffusion in gas-gas and liquid-liquid system > State different mass transfer theories. 05 08 Contents: • Definition, Ficks Law, Flux equation, Molecular diffusion in gases, Steady state diffusion of A through non diffusing B, Steady state equimolar counter diffusion. Numericals. 05 08 • Analogy between mass transfer and heat transfer, film theory, surface renewal theory, penetration theory, Equilibrium 05 08 Topic 2: Distillation. Specific Objectives: > > 05 08 > Describe various distillation methods. > Calculate no. of equilibrium stages in distillation column > > Describe various distillation for obtaining certain purity of product. Contents: > Concept of distillation, 08 Marks) • Concept of distillation, • Doling point diagram, change of pressure on boiling point diagram. • Vapour liquid equilibrium diagram. • • Henry's Law, Raoults Law. • Determination of vapor composition by above laws. • Computing x – y data • Volatility, relative volatility • Methods of distillation 16 34 •
 Specific Objectives: Calculate the rate of diffusion in gas-gas and liquid-liquid system State different mass transfer theories. Contents: Definition, Ficks Law, Flux equation, Molecular diffusion in gases, Steady state diffusion of A through non diffusing B, Steady state equimolar counter diffusion. Numericals. Analogy between mass transfer and heat transfer, film theory, surface renewal theory, penetration theory, Equilibrium Topic 2: Distillation. Specific Objectives: Describe various distillation methods. Calculate no. of equilibrium stages in distillation column Decide a reflux ratio for obtaining certain purity of product. Contents: Concept of distillation, Boiling point diagram, change of pressure on boiling point diagram. Henry's Law, Raoults Law. Determination of vapor composition by above laws. Computing x – y data Volatility, relative volatility Methods of distillation, Flash distillation Flash distillation, batch distillation & Steam distillation Azeotropic distillation, batch distillation & Steam distillation
 Calculate the rate of diffusion in gas-gas and liquid-liquid system State different mass transfer theories. Contents: Definition, Ficks Law, Flux equation, Molecular diffusion in gases, Steady state diffusion of A through non diffusing B, Steady state equimolar counter diffusion. Numericals. Analogy between mass transfer and heat transfer, film theory, surface renewal theory, penetration theory, Equilibrium Topic 2: Distillation. Specific Objectives: Describe various distillation methods. Calculate no. of equilibrium stages in distillation column Decide a reflux ratio for obtaining certain purity of product. Contents: 2.1 Principles of Distillation, Boiling point diagram, change of pressure on boiling point diagram. Vapour liquid equilibrium diagram. Henry's Law, Raoults Law. Determination of vapor composition by above laws. Computing x – y data Volatility, relative volatility Methods of distillation, Flash distillation, Flash distillation, Flash distillation, batch distillation & Steam distillation Azeotropic distillation, batch distillation & Steam distillation
 State different mass transfer theories. Contents: Definition, Ficks Law, Flux equation, Molecular diffusion in gases, Steady state diffusion of A through non diffusing B, Steady state equimolar counter diffusion. Numericals. Analogy between mass transfer and heat transfer, film theory, surface renewal theory, penetration theory, Equilibrium Topic 2: Distillation. Specific Objectives: Describe various distillation methods. Calculate no. of equilibrium stages in distillation column Decide a reflux ratio for obtaining certain purity of product. Contents: 2.1 Principles of Distillation : (08 Marks) Concept of distillation, Boiling point diagram, change of pressure on boiling point diagram. Vapour liquid equilibrium diagram. Henry's Law, Raoults Law. Determination of vapor composition by above laws. Computing x - y data Volatility, relative volatility Methods of distillation Effash distillation Flash distillation Rectification Azeotropic distillation, batch distillation & Steam distillation 16 34
 Contents: Definition, Ficks Law, Flux equation, Molecular diffusion in gases, Steady state diffusion of A through non diffusing B, Steady state equimolar counter diffusion. Numericals. Analogy between mass transfer and heat transfer, film theory, surface renewal theory, penetration theory, Equilibrium Topic 2: Distillation. Specific Objectives: Describe various distillation methods. Calculate no. of equilibrium stages in distillation column Decide a reflux ratio for obtaining certain purity of product. Contents: 2.1 Principles of Distillation, Boiling point diagram, change of pressure on boiling point diagram. Vapour liquid equilibrium diagram. Henry's Law, Raoults Law. Determination of vapor composition by above laws. Computing x - y data Volatility, relative volatility Methods of distillation, Rayleigh's equation Flash distillation Flash distillation Azeotropic distillation, batch distillation & Steam distillation
 Definition, Ficks Law, Flux equation, Molecular diffusion in gases, Steady state diffusion of A through non diffusing B, Steady state equimolar counter diffusion. Numericals. Analogy between mass transfer and heat transfer, film theory, surface renewal theory, penetration theory, Equilibrium Topic 2: Distillation. Specific Objectives: Describe various distillation methods. Calculate no. of equilibrium stages in distillation column Decide a reflux ratio for obtaining certain purity of product. Contents: 2.1 Principles of Distillation; Concept of distillation, Boiling point diagram, change of pressure on boiling point diagram. Vapour liquid equilibrium diagram. Henry's Law, Raoults Law. Determination of vapor composition by above laws. Computing x - y data Volatility, relative volatility Methods of distillation Flash distillation Flash distillation Azeotropic distillation, batch distillation & Steam distillation
 Steady state diffusion of A through non diffusing B, Steady state equimolar counter diffusion. Numericals. Analogy between mass transfer and heat transfer, film theory, surface renewal theory, penetration theory, Equilibrium Topic 2: Distillation. Specific Objectives: Describe various distillation methods. Calculate no. of equilibrium stages in distillation column Decide a reflux ratio for obtaining certain purity of product. Contents: Concept of distillation, Boiling point diagram, change of pressure on boiling point diagram. Vapour liquid equilibrium diagram. Henry's Law, Raoults Law. Determination of vapor composition by above laws. Computing x - y data Volatility, relative volatility Methods of distillation, Plifferential distillation, Rayleigh's equation Flash distillation Azeotropic distillation, batch distillation & Steam distillation
 equimolar counter diffusion. Numericals. Analogy between mass transfer and heat transfer, film theory, surface renewal theory, penetration theory, Equilibrium Topic 2: Distillation. Specific Objectives: Describe various distillation methods. Calculate no. of equilibrium stages in distillation column Decide a reflux ratio for obtaining certain purity of product. Contents: Concept of distillation, Boiling point diagram, change of pressure on boiling point diagram. Vapour liquid equilibrium diagram. Henry's Law, Raoults Law. Determination of vapor composition by above laws. Computing x – y data Volatility, relative volatility Methods of distillation Differential distillation, Rayleigh's equation Flash distillation Rectification Azeotropic distillation, batch distillation & Steam distillation
 Analogy between mass transfer and heat transfer, film theory, surface renewal theory, penetration theory, Equilibrium Topic 2: Distillation. Specific Objectives: Describe various distillation methods. Calculate no. of equilibrium stages in distillation column Decide a reflux ratio for obtaining certain purity of product. Contents: Concept of distillation, Boiling point diagram, change of pressure on boiling point diagram. Vapour liquid equilibrium diagram. Henry's Law, Raoults Law. Determination of vapor composition by above laws. Computing x – y data Volatility, relative volatility Methods of distillation, Rayleigh's equation Flash distillation Pifferential distillation, batch distillation & Steam distillation
renewal theory, penetration theory, Equilibrium Topic 2: Distillation. Specific Objectives: Describe various distillation methods. Calculate no. of equilibrium stages in distillation column Decide a reflux ratio for obtaining certain purity of product. Contents: 2.1 Principles of Distillation : Concept of distillation, Boiling point diagram, change of pressure on boiling point diagram. Vapour liquid equilibrium diagram. Henry's Law, Raoults Law. Determination of vapor composition by above laws. Computing x – y data Volatility, relative volatility Methods of distillation Flash distillation Flash distillation, Rectification Azeotropic distillation, batch distillation & Steam distillation 16 34
Topic 2: Distillation. Specific Objectives: > Describe various distillation methods. > Calculate no. of equilibrium stages in distillation column > Decide a reflux ratio for obtaining certain purity of product. Contents: 2.1 Principles of Distillation : (08 Marks) • Concept of distillation, • Boiling point diagram, change of pressure on boiling point diagram. • Vapour liquid equilibrium diagram. • Henry's Law, Raoults Law. • Determination of vapor composition by above laws. • Computing x – y data • Volatility, relative volatility • Methods of distillation, • Differential distillation, Rayleigh's equation • Flash distillation • Azeotropic distillation, batch distillation & Steam distillation 16 34
 Specific Objectives: > Describe various distillation methods. > Calculate no. of equilibrium stages in distillation column > Decide a reflux ratio for obtaining certain purity of product. Contents: 2.1 Principles of Distillation : (08 Marks) Concept of distillation, Boiling point diagram, change of pressure on boiling point diagram. Vapour liquid equilibrium diagram. Henry's Law, Raoults Law. Determination of vapor composition by above laws. Computing x - y data Volatility, relative volatility Methods of distillation, Flash distillation Rectification Azeotropic distillation, batch distillation & Steam distillation 16 34
 Describe various distillation methods. Calculate no. of equilibrium stages in distillation column Decide a reflux ratio for obtaining certain purity of product. Contents: 2.1 Principles of Distillation : (08 Marks) Concept of distillation, Boiling point diagram, change of pressure on boiling point diagram. Vapour liquid equilibrium diagram. Henry's Law, Raoults Law. Determination of vapor composition by above laws. Computing x - y data Volatility, relative volatility Methods of distillation, Flash distillation Flash distillation Azeotropic distillation, batch distillation & Steam distillation
 Calculate no. of equilibrium stages in distillation column Decide a reflux ratio for obtaining certain purity of product. Contents: 2.1 Principles of Distillation : (08 Marks) Concept of distillation, Boiling point diagram, change of pressure on boiling point diagram. Vapour liquid equilibrium diagram. Henry's Law, Raoults Law. Determination of vapor composition by above laws. Computing x – y data Volatility, relative volatility Methods of distillation Differential distillation, Rayleigh's equation Flash distillation Rectification Azeotropic distillation, batch distillation & Steam distillation
 Decide a reflux ratio for obtaining certain purity of product. Contents: 2.1 Principles of Distillation : (08 Marks) Concept of distillation, Boiling point diagram, change of pressure on boiling point diagram. Vapour liquid equilibrium diagram. Henry's Law, Raoults Law. Determination of vapor composition by above laws. Computing x – y data Volatility, relative volatility Methods of distillation Differential distillation, Rayleigh's equation Flash distillation Rectification Azeotropic distillation, batch distillation & Steam distillation 16 34
Contents: 2.1 Principles of Distillation : (08 Marks) • Concept of distillation, • Boiling point diagram, change of pressure on boiling point diagram. • Vapour liquid equilibrium diagram. • Henry's Law, Raoults Law. • Determination of vapor composition by above laws. • Computing x – y data • Volatility, relative volatility • Methods of distillation • Differential distillation, Rayleigh's equation • Flash distillation • Rectification • Azeotropic distillation, batch distillation & Steam distillation
 2.1 Principles of Distillation : (08 Marks) Concept of distillation, Boiling point diagram, change of pressure on boiling point diagram. Vapour liquid equilibrium diagram. Henry's Law, Raoults Law. Determination of vapor composition by above laws. Computing x - y data Volatility, relative volatility Methods of distillation Differential distillation, Rayleigh's equation Flash distillation Rectification Azeotropic distillation, batch distillation & Steam distillation 16 34
 Concept of distillation, Boiling point diagram, change of pressure on boiling point diagram. Vapour liquid equilibrium diagram. Henry's Law, Raoults Law. Determination of vapor composition by above laws. Computing x - y data Volatility, relative volatility Methods of distillation Differential distillation, Rayleigh's equation Flash distillation Rectification Azeotropic distillation, batch distillation & Steam distillation 16 34
 Boiling point diagram, change of pressure on boiling point diagram. Vapour liquid equilibrium diagram. Henry's Law, Raoults Law. Determination of vapor composition by above laws. Computing x - y data Volatility, relative volatility Methods of distillation Differential distillation, Rayleigh's equation Flash distillation Rectification Azeotropic distillation, batch distillation & Steam distillation 16 34
 Vapour liquid equilibrium diagram. Henry's Law, Raoults Law. Determination of vapor composition by above laws. Computing x - y data Volatility, relative volatility Methods of distillation Differential distillation, Rayleigh's equation Flash distillation Rectification Azeotropic distillation, batch distillation & Steam distillation 16 34
 Henry's Law, Raoults Law. Determination of vapor composition by above laws. Computing x - y data Volatility, relative volatility Methods of distillation Differential distillation, Rayleigh's equation Flash distillation Rectification Azeotropic distillation, batch distillation & Steam distillation 16 34
 Determination of vapor composition by above laws. Computing x - y data Volatility, relative volatility Methods of distillation Differential distillation, Rayleigh's equation Flash distillation Rectification Azeotropic distillation, batch distillation & Steam distillation 16 34
 Computing x - y data Volatility, relative volatility Methods of distillation Differential distillation, Rayleigh's equation Flash distillation Rectification Azeotropic distillation, batch distillation & Steam distillation 16 34
 Volatility, relative volatility Methods of distillation Differential distillation, Rayleigh's equation Flash distillation Rectification Azeotropic distillation, batch distillation & Steam distillation 16 34
 Methods of distillation Differential distillation, Rayleigh's equation Flash distillation Rectification Azeotropic distillation, batch distillation & Steam distillation 16 34
 Differential distillation, Rayleigh's equation Flash distillation Rectification Azeotropic distillation, batch distillation & Steam distillation 16 34
 Flash distillation Rectification Azeotropic distillation, batch distillation & Steam distillation 16 34
 Rectification Azeotropic distillation, batch distillation & Steam distillation 16 34
Azeotropic distillation, batch distillation & Steam distillation 16 34
2.2 Design
2.2 Design (12 Walks)
• Material balance on distillation column
 Derivation of equation for feed line, top and bottom operating line
• McCabe – Thiele method
• Lewis – Sorel method
• a line derivation effect of feed conditions on slope of a line
 Reflux ratio – minimum total & ontimum reflux ratio
Fauinments for distillation
Bectification column
Rectification column Bubble can plate
Sieve plate
Valvo plato
• Valve plate
 Down contents & wells Introduction to neeked distillation column
 Introduction to packed distillation column 2.2 Numericals based on Simple Distillation Electropic colorilation
2.5 Numericals based on Simple Distillation, Flash Distillation & Calculating
Method (14 Marks)

Topic 3: Absorption		
Specific Objectives :		
Calculate minimum liquid gas flow rate ratio to obtain a certain composition of outlet gas.		
State selection criteria for packing material in packed column and its		
effect on absorption		
Contents:		
• Concept of Gas Absorption, comparison with distillation, selection criteria for solvent.	06	14
• Concept of equilibrium, minimum liquid-gas ratio, material balance, Concept of HETP.		
• Hydrodynamics of packed column. Loading and flooding of packed columns.	1	
• Gas absorption equipments- mechanically agitated vessel, packed		
Tonic 4: Extraction		
Specific Objectives :		
Distinguish between distillation and extraction		
 Distinguish between distination and extraction. State the application of various extraction equipment. 		
Contents:		
Concept of Extraction liquid liquid extraction comparison between	06	12
• Concept of Extraction, inquid-inquid extraction, comparison between distillation and extraction, distribution coefficient, selection oritorion of		
solvent		
• Extraction agginments, mixer settler, spray column, rotating disc		
• Extraction equipments- mixer settler, spray column, totating disc		
Tonic 5: Drying		
Specific Objectives:		
Calculate the time required for drying solids from initial to final		
moisture content		
 Selection of dryer to be used for drying different materials 		
Contents:		
5.1 General Principles (14 Marks)		
• Moisture content on dry and wet basis		
• Total free critical and equilibrium moisture content		
Rate of drying-Constant and falling rate period		
Time required for drying	08	20
Numericals	08	20
(06 Marks)		
• Drying equipments & their Application		
Troy dryor		
Deters driver		
Rotary drycer		
• Spray dryer		
• Fluidized bed dryer		
• Pneumatic dryer		
Tonics 6: Crystallization		
Specific Objectives:		
Evaluin colubility and super colubility curve	07	12
 Explain solubility and super solubility curve. Calculate the yield of crystal that can be obtained for different feed 	07	12
composition		
- stap obtion.	1	

Contents:		
• Concept of crystallization, saturation, super saturation, solubility curves		
• Method of super saturation, Mier's super saturation theory.		
 Crystallization equipments- Agitated tank crystalliser, vacuum crystalliser, Oslo (cooler and evaporative) crystallizer, Swenson-Walker crystallizer. Simple material balance numericals on crystallization 		
• Simple material balance, numericals on crystallization.		
Total	48	100

Practical:

Skills to be developed:

Intellectual Skills:

- 1. Control operating parameters in different unit operation equipments.
- 2. Select suitable solvents for extraction / absorption.

Motor Skills:

- 1. To measure and control various parameters to control the quality of output product.
- 2. To operate different types of dryers.
- 3. To operate different types of distillation columns.

List of Practicals:

- 1. To verify Rayleigh's equation by simple distillation.
- 2. To compare the purity of distillate in a packed column at total reflux and any other reflux ratio.
- 3. To calculate the pressure drops of a given packed column for wet and dry packing.
- 4. To find out distribution coefficient for liquid liquid mixture.
- 5. To find the percent yield of crystallization using a batch crystallizer.
- 6. To plot drying rate curves.
- 7. To plot the solubility curve while heating and cooling.
- 8. Control of distillation column on simulator.
- 9. To construct an equilibrium diagram [X-Y plot].
- 10. To perform a fractional distillation experiment to measure purity and verify material balance.
- To determine the diffusivity of volatile liquids & compare diffusivities of any three volatile liquids (Reference: Richardson & Coulson, 6th Edition, Vol. 2, page 582)

Learning Resources: Books:

Sr. No.	Author	Title	Publisher
1.	Mr. Walter L. Badger & Mr. Julius T. Banchero	Introduction to Chemical Engineering	Tata Mc Graw Hill, New Delhi
2.	Mc Cabe, W. L. Smith & Harriot.	Unit Operations of Chemical Engineering.	Tata Mc Graw Hill International, New York
3.	Treybal, Robert E	Mass Transfer Operations	Tata Mc Graw Hill International, New York
4.	Richardson & Coulson	Chemical Engineering Vol. 2	Asian Books Pyt. Ltd., New Delhi

Websites:

www.vlab.co.in

Course Name : Diploma in Chemical Engineering Course Code : CH Semester : Sixth Subject Title : Alcohol Technology Subject Code : 17649

Teaching and Examination Scheme:

Teac	ching Sch	ieme			Examinati	on Scheme		(
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
03		02	03	100			25@	125

NOTE:

- > Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.
- > Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

During last century, alcohol technology has greater importance in chemical industry because of its use in medicine; paint, as a solvent etc. There has been tremendous growth in various fields of chemical industry. The knowledge of this development is useful in understanding the future needs of chemical industry. All the chemical industry basically requires unit operations & unit processes. The basic content like fermentation, distillation and microbiology are covered in the contents, which will help in understanding the higher levels of subjects.

Objectives:

The students will be able to

- 1. Understand the unit operation in chemical industries.
- 2. Understand the role of enzyme, bacteria, yeast in fermentation.
- 3. Know uses of various alcohol based product.
- 4. Prevent pollution in alcohol industries.

Theory Content:

Topic and Contents	Hours	Marks
Topic 1: Unit Processes and operations related to alcohol Technology		
Specific Objectives:		
 Describe process of fermentation 		
Define Distillation, Evaporation		
Contents:	06	18
Batch fermentation		
Continuous Distillation		
Azeotropic Distillation		
Evaporation		
Topic 2: Applied Microbiology		
Specific Objectives:		
Explain yeast morphology and Taxonomy		
Explain Concept of Nutrition		
Contents:		
2.1 Yeast , Enzyme and Bacteria	10	20
Definition, comparison with other microorganisms	12	20
Yeast morphology and Taxonomy		
Nutritional requirement of yeast		
Pre treatment (Liquefaction) of Enzyme		
• Enzyme dosing		
Bacteria used for fermentation		
Topic 3 : Stimulation and Acclimatization of yeast		
Specific Objectives:		
State acidification of yeast		
Describe propagation of yeast		
Contents:	10	22
• Material of construction and maintenance of yeast vessel	10	22
Pre fermentation practices adopted for yeast propagation		
Propagation practices of yeast		
Yeast Acidification		
• Use of sterile air system in pre-fermenter		
Topic 4: Alcohol Technology		
Specific Objectives:		
State use of yeast, Enzyme and Bacteria in manufacturing		
Contents:		
4.1 Raw Material, Reaction, Flow Diagram and Process Description of the		
following	10	
Manufacturing of Malt alcohol	12	22
Manufacturing of Rum		
Manufacturing of Whisky		
Manufacturing of Brandy		
Manufacturing of Vodka		
Manufacturing of Industrial Spirit		
Topic 5: Effluent Treatment		
Specific Objectives:	00	10
State the methods of pollution control	08	18
Contents:		

 Toxicological effect Government stipulated condition for Alcohol Industry waste water Primary treatment Biological treatment 	 100
Content of waste	

Practical:

Skills to be developed:

Intellectual Skills:

- 1. Apply principles to select proper material for given products.
- 2. Interpret the test results.
- 3. Judge the density of given polymer.

Motor Skills:

- 1. Handle the instruments properly.
- 2. Handle chemicals carefully & safely.
- 3. Prepare various tests as per standard.

List of Practicals:

- 1. Determination of total solids and suspended solids of molasses
- 2. Determination of brix, specific gravity, pH of molasses.
- 3. Propagation of yeast in laboratory
- 4. Study of alcohol from sweet potato
- 5. Determination of starch in grain sample
- 6. Study of different types of microorganisms used in fermentation process
- 7. To determine the reducing sugar in the given sample of molasses.
- 8. To conduct potassium permanganate test for finding the quality of spirit
- 9. Determination of methyl alcohol content of spirit
- 10. Determination of sludge contents of molasses.

Learning Resources:

Books:

Sr. No.	Author	Title
1	Jacques, T.P.Lyon, Dr. Kelsall	The Alcohol Textbook
2	Satyanarayana Rao	Alcoholometry
3	A.C.Chatterjee	Handbook of fermentation & Distillation
4	H.C.Baron	Distillation
5	Paturao	Byproducts of Sugar Industry

Course Name : Diploma in Chemical Engineering Course Code : CH Semester : Sixth Subject Title : Petro Chemical Technology (Elective) Subject Code : 17651

Teaching and Examination Scheme:

Teac	hing Scl	neme		Examination Scheme			(
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
03		02	03	100			25 @	125

NOTE:

- > Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.
- > Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

There are various types of chemical industries. Among them petroleum and petrochemical industries are expanding very fastly in India and world wide due to increasing demand.

Chemical engineers have better job opportunities in such industries. In view of increasing job requirements, this subject has been introduced as an elective subject. This subject covers aspects related to petroleum refining process and petrochemical processes.

These contents will develop in sight among the chemical engineers.

General Objectives:

Student will be able to:

- 1) Understand the global crude oil scenario.
- 2) Manufacturing of different petroleum and petrochemical products from crude oil.
- 3) Working of unit operations & unit processes in refineries to improve quality of fuel.

Theory:

Topic and Contents	Hours	Marks
Topic 1: Introduction to Petroleum Refining		
Specific Objectives:		
State names and location of given refineries		
Give composition of crude oil		
Contents:	06	14
• Indian Refineries, their location and capacity		
Global crude oil producers, OPEC		
Characteristics, Composition, constituents of crude oil		
Topic 2: Refining		
Specific Objectives:		
> Describe the distillation of crude oil to obtain various fractions		
Give names of different fractions, their boiling ranges and uses		
Contents:	10	22
Preliminary processing of petroleum refining		
Distillation of crude oil		
• Hydrocarbons/ fractions obtained from crude oil, Boiling Range and		
their uses		
Topic 3: Unit Processes in Refineries		
Specific Objectives:		
 Give definitions of different properties of fuel 		
Describe different unit processes used in refineries		
Describe different waste treatment methods		
Contents:		
3.1 Definitions of octane number, cetane number, flash point, fire point,		
aniline point, pour point, cloud point, drop point, ignition temperature,		
calorific value. (06 Marks)	16	32
3.2 Flow sheet and reaction of (16 Marks)	10	52
• Hydrogenation, Cracking, Alkylation, Polymerisation, Hydrocracking,		
Isomerization, Reforming, Esterification & Hydration.		
3.3 Waste Treatment - (10 Marks)		
Emission control		
Oil removal		
Organic content removal		
• Solid & hazardous waste treatment		
Topic 4 : C1 to C4 and Aromatic Hydrocarbons		
Specific Objectives:		
► List different petrochemicals obtained from C1 to C4 and aromatic		
hydrocarbons and describe specific petrochemicals	16	32
Contents:		
4.1 List of Hydrocarbons from C1, Manufacturing process, flow sheet and		
reactions of formaldehyde, methanol (06 Marks)		

Total	48	100
Production of BTX		
4.5 Aromatic Fractions (06 Marks)		
reactions of Butadiene, MTBE, Butyle acetate (06 Marks)		
4.4 List of Hydrocarbons from C4, Manufacturing process, flow sheet and		
reactions of Acetaldehyde, propylene oxide (06 Marks)		
4.3 List of Hydrocarbons from C3, Manufacturing process, flow sheet and		
reactions of Ethanol, ethylene oxide, styrene (08 Marks)		
4.2 List of Hydrocarbons from C2, Manufacturing process, flow sheet and		

Practical: Skills to be developed:

Intellectual Skills:

- 1) Interpret test results
- 2) Follow systemic procedure for handling Chemicals

Motor Skills:

- 1) To handle equipments / instruments
- 2) To observe physical phenomenon

Note: Following practicals to be conducted by a group of 2 students.

List of Practicals:

- 1) Determination of Aniline Point.
- 2) Determination of Fire Point, Flash Point.
- 3) Determination of calorific value.
- 4) Measurement of viscosity by using Redwood Viscometer
- 5) Preparation of Ethyl Acetate by Esterification.
- 6) Preparation of Biodiesel from used cooking oil by Transesterification process and observe two layers of biodiesel and glycerin respectively.
- 7) Preparation of Phenol Formaldehyde resins.
- 8) Determination of Drop Point.
- 9) Determination of Pour Point.
- 10) To determine the carbon residue of oil by using Caondradson Apparatus/Ramsbottom Apparatus.

Learning Resources:

Llaim	ng Kesour
Books:	
Sn	

Sr. No.	Author	Author Title	
01	M. Gopala Rao, M. Sittig,	Dryden's Outlines of Chemical Tech	East West Press
02	George Austin	Shreve's Chemical Process Industries	Mc Graw Hill Publication
03	B. K. Sharma	Fuels and Petroleum processing	Goel publishing
04	B.K. Bhasker Rao	Petrochemicals	Khanna Publishers
05	B.K. Bhasker Rao	Modern Petrochemical Refining	Oxford –IBH Publications

Course Name : Diploma in Chemical EngineeringCourse Code : CHSemester : SixthSubject Title : Process SimulationSubject Code : 17802

Teaching and Examination Scheme:

Teaching Scheme					Examinati	on Scheme		<
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
		02					25@	25

Rationale:

Most of the Chemical process plant are operated and controlled though Distributed Control System (DCS). It is necessary to train student on DCS process simulator where he will get first hand experience of process plant Operation and control.

Objectives:

Student will be able to:

- 1. Understand process instrument controls.
- 2. Get familiarized with the various chemical process.
- 3. Get experience and exposure to set of typical upset and equipment malfunction.

Content: Theory

Note: Content of theory are to be taught in practical period.

Topic No.	Name of Topic	Hours			
	Process Simulators				
1	Need of simulators, Application simulators distributed controlled system-	01			
	Dynamic Graphic (mimic), Bar graph, Trend and Alarm,				
	Process Simulator Software				
	Installation of software. Introduction of software features using member,				
	Toolbar, dialogue bar, Toolbar, Status bar Scroll bar Title bar.				
2	Screens (Display), Mimics, bar graph, trend alarms, snapshots, back track,				
	caution longing, connectivity between bar graph – mimics-trends-alarm,				
	Exercise-loading, saving, delete, Controlling the session – run freeze, quit etc.				
	mal function, online hold, start up and shut down procedure.				

Practical:

Note:

1. Print of logs to be attached as term work.

2. Practicals can be conducted in group of 4 students.

- 1. Each institute may be having simulation software of old version or new version.
- 2. The software help files provide guidelines and exercises for implementation.
- 3. Provide sufficient practice to the students preferably in group of three.
- 4. Following are the suggested modules. Give the practice to the students on any six modules.
 - i. Binary distillation column for Benzene and Toluene.
 - ii. Temperature and pressure control
 - iii. Stirred tank reactor.
 - iv. Filtration.
 - v. Level and Flow in different type size vessels.
 - vi. Three-element boiler control.
 - vii. Level control in coupled tanks.
 - viii. Pressure control in different sizes valve.
 - ix. Catalytic reactor.
 - x. Absorption
 - xi. Superheated steam
 - xii. Dryer
 - xiii. Heat Exchanger
 - xiv. Multi component distillation column

Course Name : Diploma in Chemical Engineering Course Code : CH Semester : Sixth Subject Title : Project & Seminar Subject Code : 17803

Teaching and Examination Scheme:

Teaching Scheme					Examinati	on Scheme		
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
		04				50#	50@	100

Rationale:

In practice the diploma technicians come across problems of varied nature. He/she will have to solve the problems involving drawings, designs, manufacturing, installation, testing and maintenance of machines. In order to cultivate the systematic methodology for problem solving using acquired technical knowledge and skills, this particular subject is introduced.

This subject will also help to enhance the generic skills and professional skills.

Contents: Skills to be Developed: Intellectual Skills

- 1. Design various equipments used in a unit operation and unit process.
- 2. Convert innovative or creative idea into reality.
- 3. Understand and interpret Chemical process drawing.
- 4. Put into practice the theoretical knowledge gained.

Motors Skills

- 1. Classify and analyze the information collected.
- 2. Modify the existing process to maximize output.
- 3. Trouble shooting of defective process equipment.
- 4. Analyze the financial aspect of a chemical plant.
- Notes: 1) Project group size : Maximum 4 student.
 - 2) Project report will be of minimum 40 pages unless otherwise specified.
 - 3) Project diary should be maintained by each student.

17803 CH6

PART A) Project

Batch of maximum 4 students will select a topic and then plan, organize and execute the project work of solving the problem in a specified duration. Student is expected to apply the knowledge and skills acquired. Batch may select any one topic from the following categories.

- a) Literature survey based project: The most economical and viable manufacturing process of any chemical is related. Students should compulsorily study the properties, thermodynamic feasibility, process selection, process description, material & energy balance, cost estimation, application, P & I diagram by industrial visit and literature survey.
- b) Lab scale manufacture of any chemical/ product: Student should do a detailed study of the manufacturing of any Chemical / product which can be prepared in lab and the same shall be prepared.
- c) Preparing the Scale model of any Chemical Process equipment: Student should analyze a problem to design equipment and a scale model should be prepared.
- d) Projects using equipment available in the laboratory: Students should use the existing equipment in the laboratory, study & analyze various processes used in the equipment and develop different applications.
- e) Project based on industry like: pollution control, effluent treatment, energy auditing, trouble shooting.
- f) Project title should not be repeated for minimum three consecutive years.

PART B: Seminar

a) Students should prepare and deliver a seminar on the assigned project at the end of semester using power point slides / presentation. The marks of the same shall be considered in term work.